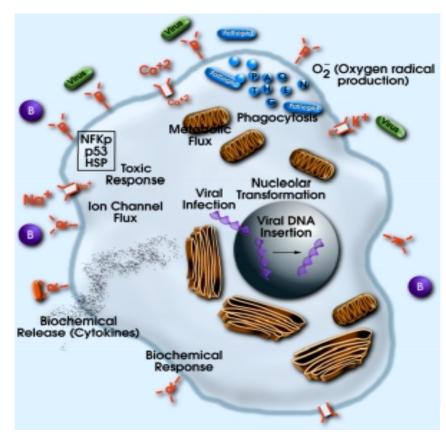


Cell and Tissue Based Biosensors

Alan S. Rudolph
Defense Science Office

Biology at DARPA


Current Programs:

- Bioflips (Dr. Abe Lee, MTO, <u>aplee@darpa.mil</u>)
- Symbiosis (Dr. Anantha Krishnan, MTO, <u>akrishnan@darpa.mil</u>)
- Biocomputation (Dr. Sri Kumar, ITO, <u>skumar@darpa.mil</u>)
- Uncoventional Pathogen Countermeasures (Dr. John Carney, DSO, <u>icarney@darpa.mil</u>)
- Bio-Info-Micro, (Dr. Eric Eisenstadt, DSO, <u>eeisenstadt@darpa.mil</u>)
- Biosurveillance (Dr. Murray Burke, ATO, <u>mburke@darpa.mil</u>)
- Tissue Based Biosensors (Dr. Alan S. Rudolph, DSO, arudolph@darpa.mil)
- Controlled Biological and Biomimetic Systems (Dr. Alan S. Rudolph, DSO, <u>arudolph@darpa.mil</u>)
- Advanced Diagnostics (Dr. Alan S. Rudolph, DSO, arudolph@darpa.mil)
- Metabolic Engineering for Cellular Stasis (Dr. Robert Carnes, DSO, arudolph@darpa.mil)

Biological Cells As Sensors

- Cell is unit machine in biology responsible for systems level processing
 - communicative
 - regenerative and progenic
 - self-powering/mobile
- Cells respond to environment in specific, reproducible and redundant ways
 - oxygen/nitrogen radicals
 - biochemical markers cytokines/growth factors
 - morphological/structural
 - genetic
- Cell sensors do not require specific identification of threat
 - processing will result in identification
 - amplification of response

- Response is predictive of functional consequences
 - pathogenesis
 - human health risk


Living Sensors: The Need

- The list of possible environmental threats is growing
- Emerging threats and yet identified threats are increasing due to widening access to biotechnology
- Operational need for 'broad based' detection
 - 'canary on a chip'
 - "is it a safe environment?", "is there a change in the diagnostic test from a control sample?"
- Broad based detection will often require confirmatory testing ('trigger')

What are Activity Detection Systems?

- Detection systems based on response of biological cellular or tissue processor
- Respond to known or unknown chem-bio threats
- Provide three levels of information
 - Detection state change in sample from good to bad
 - Classification define threat into categories: bacterial, viral, toxin, combustion product
 - Identification compare activity response to library of known responses and report activity probability match

The Challenge

GOAL

To develop an activity based detection system using cells and tissues

Sample Collection & Preparation

- Sample Introduction
- Sample Types
- Sample Size
- Background Interferents

Design & Engineering

- Optimal Cell Types
- Fluidics
- Adhesion
- Stability
- Optics

Detection Capabilities

- Signatures of cell responses
 - Model & Simulants
 - BW & CW Agents
 - Unknown
 - · Live vs. Dead
- Sensitivity
- Specificity
- Speed
- Dose/Response

Data Acquisition & Data Analysis

- Modeling Single and Multi Cellular Arrays
- Signal Processing
 - Extraction of Signatures
- Decision Algorithms

The General Setting for Computational Designs

CONCEPT EXPLORATION PHASE

HYPOTHESIS TESTING

CONCEPT SELECTION

HYPOTHESIS TESTING

ESTIMATION

DEMONSTRATION/VALID ATION

ESTIMATION

FULL SCALE DEVELOPMENT

PROCESS CONTROL: TIME SERIES

PRODUCTION PHASE

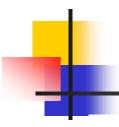
PROCESS CONTROL: TIME SERIES

OPERATION AND SUPPORT

The General Setting for Developing A Cell Sensor

CONCEPT EXPLORATION PHASE

CONCEPT SELECTION


DEMONSTRATION/VALID ATION

FULL SCALE
DEVELOPMENT

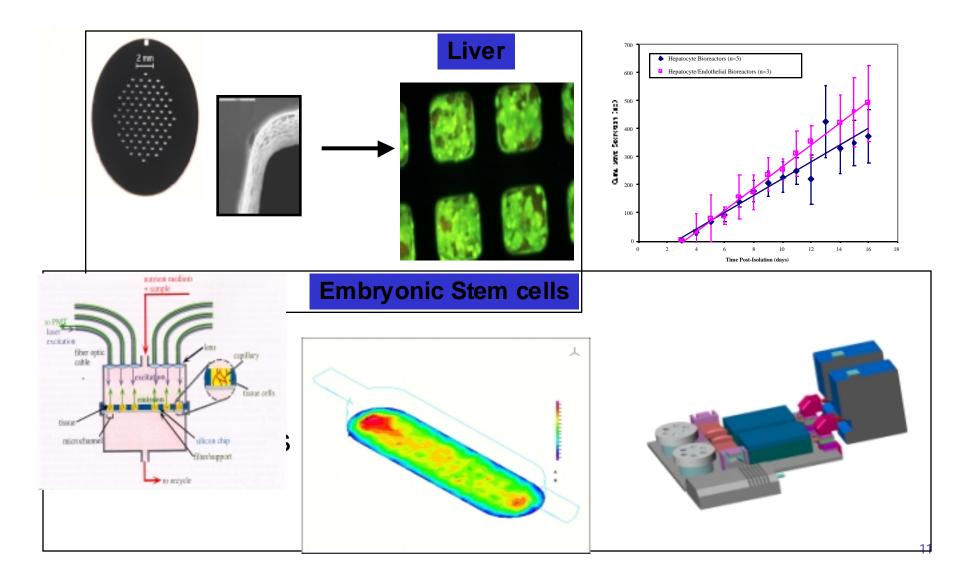
CALIBRATION

PRODUCTION PHASE

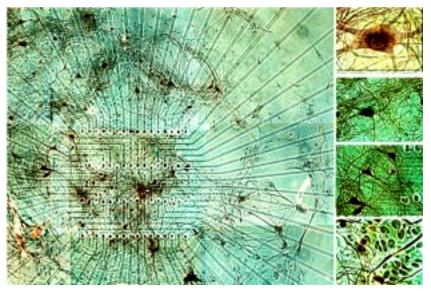
OPERATION AND SUPPORT

Why Calibrate?

- If You Cannot Calibrate Your Phenomenon, It May Never Be Part Of An Device or Instrument-a Biosensor- or a 'technology'
- There Is No Magic To Calibration: It Must Be Done Whether You Are Using Doseresponse Curve Methods, Neural Nets, Mixture Models, Automatic Pattern Recognition or other computational tools.

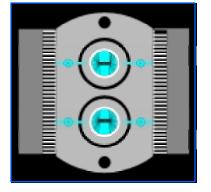


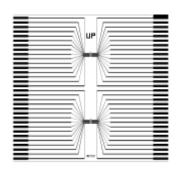
Optical Cellular Microarrays



Ex Vivo Tissue Engineered Approved for Public Release, Distribution Unlimited Toward "Human on a Chip"

NeuroTechnology





Neuronal Networks on Arrays

| Native | Activity | O.9 | I.5 | 2.0 | 3.0 | Max | Vash | 1 | Vash | 2 | Vash | 1 | Vash | 2 | Va

Recording and Life Support Chambers

2-network arrays & chambers

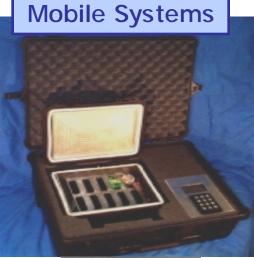
Cell/Tissue Prototypes

Tissue Based Prototypes

NE TWORK
PARKING STATION
with LIFE SUPPORT
Existing holding station
that allows maintenance
of networks away from
the fixed recording
station to provide access
to the station for other
experiments.

NE TWORK REMOTE RE CORDING STATION

Modification of parking station to include VLSI preamps, digital signal process or s (DS Ps) not shown, and a real-time threat assessment d afa analysis system with laptop computer (not shown)


Interfaces & Fluidics

 Testing and validation in progress

Bench top Prototypes

Cittomes'

Handheld Sensors

- Intracellular computation and iterative experimental validation are critical to realizing a Defense capability using cells
- Calibration is essential toward technology development for sensors/diagnostics/therapeutics
- Encourage BIOCOMP investigators to collaborate with other biology programs at DARPA